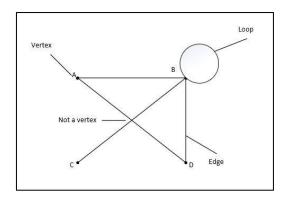
GRAPH TERMINOLOGY



SUMMARY OF GRAPH TERMINOLOGY IN GRAPH THEORY

The size of a graph is the number of its edges.

The degree of a vertex written deg(v) is equal to the number of edges which are incident on v

The sum of the degrees of the vertices of a graph is equal to twice the number of edges

The vertex v is said to be even or odd (parity) according as deg(v) is even or odd

A vertex v is isolated if it is does not belong to any edge

A vertex with degree 1 is called a leaf vertex

The incident edge of vertex with degree 1 is referred as a pendant edge

A path is the sequence of connected vertices.

A simple path is a path where the vertices are only passed through once

A trail is a path where each edge is traveled once, meaning that there are no repeated edges (all edges are distinct)

The length of the path is the number n of edges that it contains

The distance between two vertices is described by the length of the shortest path that joins them

A cycle / simple cycle is a closed path with at least 3 edges, and no repeated vertices and

An acyclic is a graph that has no cycles in it

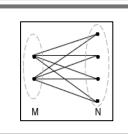
A closed path or circuit is a path that starts and ends at the same vertex

A graph is called planar if it can be drawn in the plane without any edges crossing each other

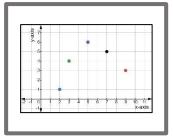
TYPE OF GRAPH

COMPLETE GRAPH

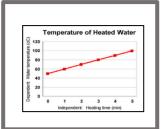
BIPARTITE GRAPH



DISCRETE GRAPH



LINEAR GRAPH



ISOMORPHIC GRAPH

Two or more graphs are isomorphic if they have the same:

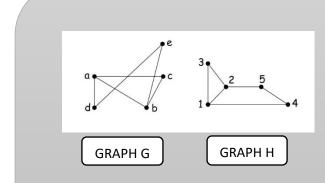
Number of vertices

Number of edges

Degree for each distinct vertices

The graphs have bijective function

Example of isomorphic graphs:



Determine whether the graphs above are isomorphic or not?

Step		Graph G		Graph H	
1.	No. of vertices	5		5	
2.	No. of edges	6		6	
3.	Degree of vertex	Deg(a)	3	Deg(1)	3
		Deg(b)	3	Deg(2)	3
		Deg(c)	2	Deg(3)	2
		Deg(d)	2	Deg(4)	2
		Deg(e)	2	Deg(5)	2
4.	Illustrate the graph G & H to ensure it have bijective function! $f(a)=1 \ f(b)=2 \ f(c)=3 \ f(d)=4 \ f(e)=5$				

EULER PATH, EULER CIRCUIT, HAMILTON PATH, HAMILTON CIRCUIT

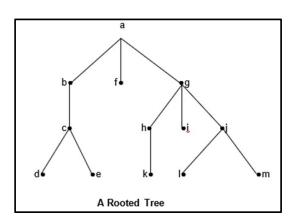
Euler path -A connected multigraph has an **Euler path** if and only if it has **exactly two vertices of odd degree**.

Euler Circuit- A connected multigraph has an Euler circuit if and only if every vertex have even degree.

Hamilton path-A Hamilton path is a simple path in a graph G that passes through every vertex exactly once.

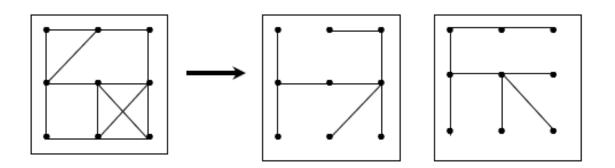
Hamilton Circuit-A Hamilton circuit is a simple circuit in a graph G that passes through every vertex exactly once.

EXAMPLE OF TREES



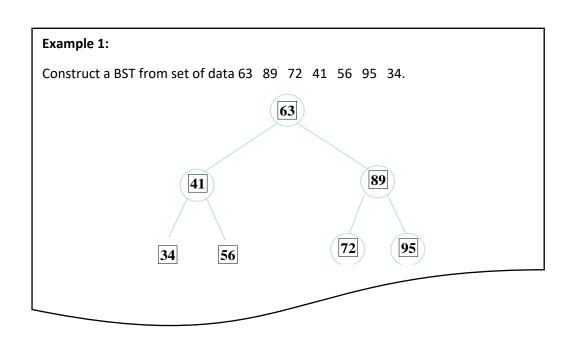
- The root is a.
- The parent of h,i and j is g.
- The children of b is c. The children of j are I and m.
- h, i and j are a sibling.
- The ancestor of e are c, b and a.
- The descendants of b are c, d and e.
- The internal vertices are a, b, c, g, h and j. (vertices that have children)
- The leaves are d, e, f, i, k, I and m. (vertices that have no children)

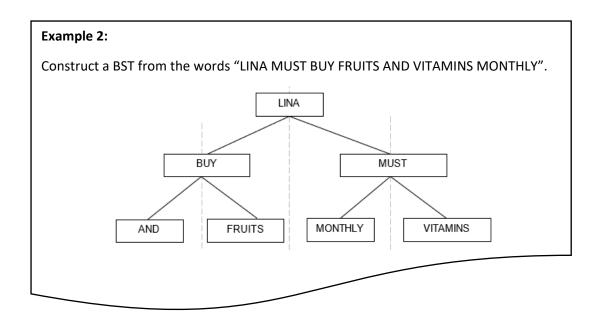
SPANNING TREES

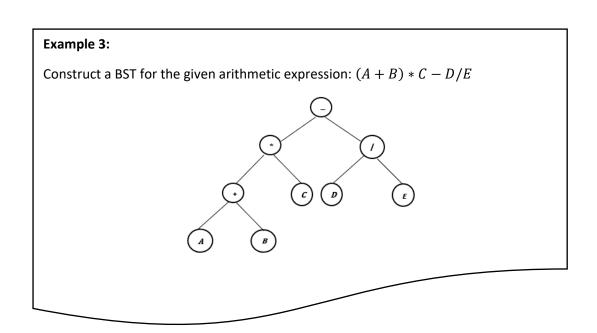


MINIMAL SPANNING TREES

EXAMPLES OF BINARY SEARCH TREE

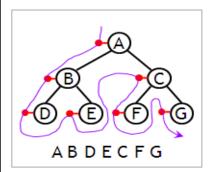






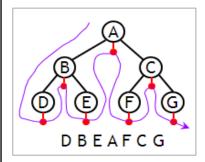
ORGANIZE TREE TRAVERSALS

PRE- ORDER TRAVERSAL:



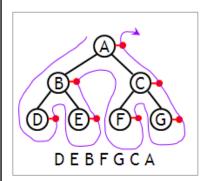
Pre-order: A, B, D, E, C, F, G

IN- ORDER TRAVERSAL:



In-order: D, B, E, A, F, C, G

POST- ORDER TRAVERSAL



Post-order: D. E. B. F. G. C. A